
Applying Combinatorial Test Data Generation to Big Data
Applications

Nan Li
Research and Development

Medidata Solutions
New York, NY, USA
nli@mdsol.com

Yu Lei
Dept. of Computer Science

and Engineering
The University of Texas at

Arlington
Arlington, TX, USA

ylei@cse.uta.edu

Haider Riaz Khan
Research and Development

Medidata Solutions
New York, NY, USA

hriaz@mdsol.com

Jingshu Liu
Research and Development

Medidata Solutions
New York, NY, USA
jliu@mdsol.com

Yun Guo
Dept. of Computer Science
George Mason University

Fairfax, VA, USA
yguo7@gmu.edu

ABSTRACT
Big data applications (e.g., Extract, Transform, and Load (ETL) ap-
plications) are designed to handle great volumes of data. However,
processing such great volumes of data is time-consuming. There
is a need to construct small yet effective test data sets during agile
development of big data applications.

In this paper, we apply a combinatorial test data generation ap-
proach to two real-world ETL applications at Medidata. In our ap-
proach, we first create Input Domain Models (IDMs) automatically
by analyzing the original data source and incorporating constraints
manually derived from requirements. Next, the IDMs are used to
create test data sets that achieve t-way coverage, which has shown
to be very effective in detecting software faults. The generated test
data sets also satisfy all the constraints identified in the first step.
To avoid creating IDMs from scratch when there is a change to the
original data source or constraints, our approach extends the orig-
inal IDMs with additional information. The new IDMs, which we
refer to as Adaptive IDMs (AIDMs), are updated by comparing the
changes against the additional information, and are then used to
generate new test data sets. We implement our approach in a tool,
called comBinatorial bIg daTa Test dAta Generator (BIT-TAG).

Our experience shows that combinatorial testing can be effec-
tively applied to big data applications. In particular, the test data
sets created using our approach for the two ETL applications are
only a small fraction of the original data source, but we were able
to detect all the faults found with the original data source.

CCS Concepts
•Software and its engineering → Software testing and debug-
ging;

Keywords
Big Data Testing, Combinatorial Testing, Input Domain Model,
Adaptive Input Domain Model, Test Data Generation

1. INTRODUCTION AND CHALLENGES
One important characteristic of the big data concept is high vol-

ume [15]. The datasets used in industry are often measured in
terabytes or higher orders of magnitude. For example, at Medi-
data, we deal with a large amount of data from various clinical trial
sites, studies, and subjects. Also, as more clients are using Inter-
net of Things (IoT)1 such as Vital Connect and Actigraph apps, the
amount of data to process is expected to grow quickly and tremen-
dously in the future. Even with latest advances in computing tech-
nologies such as Hadoop MapReduce2, processing large amounts
of data can easily take days, weeks, or even months. Since process-
ing high volumes of data can be time-consuming [22], small yet
effective test data sets need to be constructed for testing during de-
velopment of big data applications. This is particularly so for agile
software development where testing is performed frequently.

In this paper, we deal with one common type of big data applica-
tion called, Extract, Transform, and Load (ETL) application. ETL
application developers write SQL, Hive or Pig3 scripts for report-
ing and analytics purposes. In a typical ETL process, data is ex-
tracted from an original data source (e.g., a Microsoft SQLServer
database), and is then transformed into a structured format (e.g., a
flat file on Amazon Simple Storage Service (S3)) to support queries
and analysis. Finally, the data is loaded into a final target (e.g.,
a PostgreSQL database) for customers to view. The original data
source is called the source. The final target that loads data is called
the target. For example, at Medidata, we compute, store, and ana-
lyze dozens of terabytes of clinical trial data through ETL processes
using Amazon Web Services (AWS).

In industry, practitioners often manually generate small test data
sets for testing ETL applications. Manual test data generation can
be time-consuming, labor-intensive, and error-prone. On the one
1The IoT inter-connects embedded devices on the Internet.
2Apache Hadoop MapReduce processes large data sets over clus-
ters of computers using Hadoop Distributed File System (HDFS).
3Apache Hive and Pig scripts are transformed to MapReduce pro-
grams that run on top of HDFS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970325

637

hand, it may be difficult to ensure validity of test data when var-
ious business and/or structural constraints must be satisfied. On
the other hand, the quality of test data heavily depends on human
judgment and can vary significantly.

In this paper, we report our experience on applying a combinato-
rial testing approach to two real-world ETL applications. Our ap-
proach consists of two major steps, creating Input Domain Models
(IDMs) and applying combinatorial testing to the IDMs. In the first
step, we automatically create a set of IDMs, one for each database
table, from the original data source [2]. We consider each column
of a database table to be an input parameter. For each input pa-
rameter, important test values are derived from constraints that are
either automatically extracted from database schema or manually
specified by the user. For example, the user may specify a statistics-
based constraint that considers distinct values with the most or least
appearances in the original source to be important test values. In
the second step, we apply combinatorial testing to the IDMs to gen-
erate test data. Combinatorial testing has been shown to be a very
effective software testing strategy. The key observation is that most
faults are caused by interactions involving only a few parameters
[17]. A t-way combinatorial test set is designed to cover all the
t-way interactions, i.e., interactions involving no more than t input
parameters. When input parameters are properly modeled, a t-way
test set is guaranteed to expose faults that are caused by interactions
involving no more than t parameters [8].

One problem arises when there are changes in the original data
source or constraints. Since the original data source can be large
for big data applications, re-creating the IDMs from scratch when-
ever there is a change is very inefficient. To address this prob-
lem, we extend the original IDMs with additional information. The
new IDMs, which we refer to as Adaptive IDMs (AIDMs), include
the original IDMs and some analytical results of the original data
source and constraints. For example, the analytical results may in-
clude the statistical distribution of the original data source. When
the original data source or constraints change, our approach does
not need to re-process the original data source and constraints. In-
stead, it quickly updates the AIDM by comparing the changes against
the analytical results saved in the AIDM and then generates new
test data sets to reflect the latest changes. Because we process the
original source data only once, frequent test generation is made
possible, which is necessary to support agile development. AIDMs
will be discussed in Section 2.4 in detail.

We point out that our approach reuses the real data in the original
source as much as possible, even though new data may also be
generated. This helps practitioners to generate expected outcomes
and also facilitates debugging because real data is more meaningful
and thus easier to understand by practitioners, compared to using
data that is entirely synthetic.

We have implemented our combinatorial testing approach in a
tool, called comBinatorial bIg daTa Test dAta Generator (BIT-TAG).
We have used BIT-TAG to test two real-world ETL applications at
Medidata. The applications contain nearly 50,000 lines of code,
processing a total of over 1.5 TB data with 3.8 billion rows. The ex-
perimental results show that the test data sets created using our ap-
proach are only a small fraction of the original data source but still
detect all the faults that are detected by the original data sources. In
the rest of the paper, we use BIT-TAG to refer to our combinatorial
approach and tool when there is no ambiguity. We highlight the
following major contributions of this paper.

1. We present a systematic approach that applies combinatorial
testing to big data applications.

2. We implemented our approach in an enterprise-strength tool,

i.e., BIT-TAG, and evaluated the effectiveness and efficiency
of BIT-TAG using two real-world industrial ETL products.

3. We report several compelling insights gained from our ex-
perience. These lessons could help practitioners better un-
derstand and improve the process of applying combinatorial
testing to big data applications.

The paper is organized as follows. Sections 2 and 3 present the
test data generation approach and implementation. Section 4 gives
the experiment. Section 5 discusses the related work. Section 6
concludes this paper and discusses the future work.

2. THE APPROACH
This section presents in detail our combinatorial approach to

generate test data. Section 2.1 provides a brief introduction to com-
binatorial testing. Section 2.2 discusses how we create IDMs with
the original data source and constraints. Section 2.3 discusses how
we generate test data from IDMs. Section 2.4 shows how BIT-TAG
creates and updates AIDMs adaptively when there are changes.

2.1 Combinatorial Testing
Let M be a program with n parameters. Combinatorial t-way

testing requires that, for any t (out of n) parameters of M, every
combination of values of these t parameters be covered at least
once. The value of t is referred to as the testing strength. Consider
a program that has three parameters p1, p2, and p3, each parameter
having two values, 0 and 1. A 2-way (or pairwise) tests set for the
three parameters (p1, p2, p3) could be (0, 0, 0), (0, 1, 1), (1, 0, 1),
and (1, 1, 0). An important property of this test set is that if we pick
any two columns, i.e., columns p1 and p2, columns p1 and p3, or
columns p2 and p3, they contain all four possible pairs of values of
the corresponding parameters, i.e., 00, 01, 10, 11. An exhaustive
test set for these parameters consist of 23 = 8 tests.

A number of algorithms have been developed for combinatorial
test generation [5]. In particular, Lei et al. reported on a combinato-
rial testing strategy called IPOG [19]. The IPOG strategy generates
a t-way test set to cover the first t parameters and extends this test
set to cover the first t + 1 parameters. This process is repeated until
this test set covers all the parameters. Lei et al. [19] also reported a
tool called ACTS that implements the IPOG strategy. In this paper,
BIT-TAG uses ACTS to generate combinatorial test sets.

Combinatorial testing can significantly reduce the number of tests.
For example, a pairwise test set for 10 Boolean parameters only
needs as few as 13 tests, whereas an exhaustive test set consists
of 1024 tests [8]. Despite this dramatic decrease in the number of
tests, combinatorial testing has been shown to be very effective for
general software testing [17].

2.2 Input Domain Model
To apply combinatorial testing, we need to create IDMs con-

sisting of parameters and important test values. Unlike previous
research where IDMs are often created manually [7], BIT-TAG au-
tomatically creates IDMs. BIT-TAG analyzes constrains derived
from requirements and database schemas. Some constraints are
automatically derived while others are manually specified. Next,
BIT-TAG decides which test values are extracted from the original
data, and then creates IDMs with the extracted test values.

Data in various formats (e.g., videos and graphs) could be saved
in different kinds of databases (e.g., No-SQL database). In the con-
text of this paper, we study how to generate IDMs from relational
databases, which are widely used by many data analytical products
nowadays. We will discuss how to create traditional IDMs in this
section and extending IDMs to AIDMs in Section 2.4.

638

Creating an IDM consists of the following three steps. First, we
identify all the parameters for which we need to generate test values
in the IDM. Second, we select a characteristic for each parameter to
create a partition over the domain of this parameter. The partition
should be complete, i.e., it should cover the whole domain, and
disjoint, i.e., the partitioned blocks must not overlap. For example,
a characteristic for a parameter of the string type may be “if this
parameter is null.” The domain of this parameter is divided into
two blocks: “null value” and “values that are not equal to null.”
Third, we can select null from the first block and a random value
such as “test” from the second block since values in the same block
are considered to be equivalent.

As mentioned in Section 1, we create one IDM for each table
in a database. Each column is considered as a parameter of the
IDM. To create partitions, we extract important values from the
constraints (the types of constraints are shown below) that are ap-
plied to each parameter. All values derived from the constraints are
used as boundaries to create blocks. For example, if we derive from
constraints the minimum integer (min_int), 0, and the maximum in-
teger (max_int) for an integer parameter, the domain is partitioned
into three blocks: [min_int], (min_int, 0], (0, max_int]. Then we
can select the max value from each block. Next, we will discuss
how to collect the constraints and how to derive test values from
the constraints to create partitions for each data type.

We collect constraints from three sources. First, constraints, e.g.,
foreign key constraints, are derived from database schema. Sec-
ond, users may specify constraints that are derived from require-
ments. For example, users may specify some important test values
to include in specific-value constraints because these values are re-
quired to be queried in the requirements. It is important for testers
to get independent requirements and avoid interpreting source code
(SQL, Hive or Pig scripts) developed by programmers. Third, BIT-
TAG provides built-in edge case test values for different data types,
included as specific-value constraints.

BIT-TAG supports ten general types of constraints. In this sec-
tion, we discuss five constraints related to creating IDMs below,
check, default, specific-value, logic, and statistics-based constraints.
Check and default constraints are derived from database schema,
and the other three are specified by users. The other five constraints
used for test data generation will be discussed in Section 2.3.

• A check constraint is a logical expression specified for a col-
umn specified in database schema, e.g., 18 ≤ age ≤ 70, and
all the data values in this column must satisfy this expres-
sion. We can derive important boundary values from logical
expressions such as 18 and 70.

• A default constraint provides a default value to insert if no
values are explicitly specified. Default values are identified
as important test values.

• Specific-value constraints add special values to test data sets.
For instance, requirements may stipulate objects whose sta-
tuses are equal to 3, 4, and 5. Then for the status column, we
can add 3, 4, 5 as specific values. BIT-TAG derives Unicode
characters such as Chinese characters if no Unicode charac-
ters are included in the original data source. This is important
for testing products that have worldwide customers.

• Statistics-based constraints are used to derive important test
values by performing statistical analysis over the original
data source. BIT-TAG counts the numbers of appearances
(frequencies) of distinct test values for each input. By de-
fault, BIT-TAG selects the most frequent value, the least fre-

quent value, and a value with a random frequency between
the lowest and highest frequency values.

• Logic constraints are additional logical expressions derived
from requirements from SQL where clauses. Similar to check
constraints, BIT-TAG extracts values from logical expres-
sions to satisfy the where clauses. For example, if all active
projects are required to be selected in a script, and the where
clause is “isActive = 1,” then 1 is selected.

It is crucial to write constraints in a format that allows people
to easily specify them and BIT-TAG to easily parse them. We use
JSON4 as the basic format to design the data structure for each
constraint. JSON is a lightweight data format and has been widely
used in industry. We specify the constraints for each table in a
separate file. The detailed specification for each constraint will be
presented in Section 3.2.

We consider database data types as three general categories, nu-
meric, date-time, and string. Numeric types include Boolean, inte-
ger, float, double, etc. Date-time types include date, time, datetime,
timestamp, etc. String types include char, varchar, text, etc. We
create partitions for the general categories of data type as follows.

• If an input domain is numeric, the range from the minimum
value to the smallest derived test value forms a block, and the
range of the smallest derived test value to the second smallest
derived test value forms another block, and so on.

• If an input domain is of a date and time data type, the parti-
tion is created similar to the process for a numeric data type.
The only difference is that there could be a separate block
that has a null value, which is not between any two dates. An
empty string is automatically converted to a default date.

• If an input domain is of string data type, each distinct test
value is a block and the rest of the domain is another block.

If a statistics-based constraint derives additional values 22 and
60 on top on the aforementioned blocks over an integer domain,
[min_int], (min_int, 0], and (0, max_int], then (0, max_int] is fur-
ther divided into (0, 22], (22, 60], and (60, max_int]. BIT-TAG does
not derive more values if 22 and 60 are already selected before the
statistics-based constraint is applied. However, this situation is rare
for non-binary types in practice. For example, we may create a par-
tition: [min_int], (min_int, 0), [0], and (0, max_int), and [max_int],
given the min_int, 0, and the max_int. If the data type of a column
(e.g., employee role) is string, and the derived test values are “man-
ager”, “engineer” and “director,” then these three values are three
blocks, and all other string values form another block.

After IDMs are constructed, we select test values from each block.
If the data type of the domain is numeric, we select the max value
of each block. If the data type of the domain is date and time, we
select the max value of each block, as well as the null value if it
exists. If the data type is string, we choose the sole value of each
block since each derived test value is a block. For the remainder
of the domain, we select the empty string from it if this value has
not been selected. If the empty string has been selected, we select
a random string. Note that other strategies could be used to select
test values from each block.

2.3 Test Data Generation
In this section, we discuss foreign key, logic, density, unique key,

combinatorial coverage, and test set size constraints used for test
data generation. Section 2.3.1 shows the constraints. Section 2.3.2
describes an algorithm to generate test data with the constraints.
4http://www.json.org/

639

2.3.1 Test Data Generation Constraints
We use density constraints to control the size between table ob-

jects, foreign key and unique key constraints to ensure data validity,
and use logic and combinatorial coverage constraints to achieve a
well-defined test data coverage. The five constraints about test gen-
eration are explained as follows.

• Foreign key constraints define referential relationships be-
tween tables. BIT-TAG automatically extracts foreign key
constraints from database schema. Sometimes foreign key
constraints are purposely omitted due to performance con-
cerns, then they can be manually specified in JSON.

• Density constraints apply when tables have foreign key con-
straints. In a table, a foreign key column can be referred to
as a parent column and a primary key column can be referred
to as a child column. For example, if the table “Studies” has
a primary key column “StudyID” and a foreign key column
“ProjectID,” “ProjectID” is a parent column and “StudyID”
is a child column. This indicates that a project could have
one or more studies. If each project has only a few studies,
the density is low. If each project has thousands of studies,
the density is relatively high. If we have such constraints
across multiple table objects at different hierarchies, then the
constraints determine the size of the test data sets to be gen-
erated. For example, we can use this constraint to define
how many projects are there, how many studies are in each
project, how many subjects are in each study, and how many
records are in each subject, etc.

• Usually we do not want to apply combinatorial coverage to
all the columns in a table since doing so could generate too
many rows. We usually specify a combinatorial coverage
criterion such as Pair-Wise (PW) coverage to two or three
critical columns that are used in join or filter conditions of
SQL scripts. PW requires one value from each block for a
characteristic to be combined with a value from each block
for another characteristic.

• Logic constraints are additional logical expressions derived
from requirements about SQL where clauses. If a logical
coverage criterion such as Predicate Coverage (PC) and Clause
Coverage (CC) [2] is specified in constraint configuration
files, BIT-TAG analyzes the expressions to generate test val-
ues to satisfy the coverage. Note that PC requires a test set
to evaluate the predicate to true and false. CC requires a test
set to evaluate every clause to true and false.

• The test set size constraint specifies a number of rows to be
generated in a test set of a table.

Users may or may not add density, combinatorial coverage, logic,
or test set size constraints for a table. If they do not specify any of
these constraints, BIT-TAG just uses the test values derived from
IDMs. In this case, Each Choice coverage (EC) is applied. EC
requires each value from each block for each characteristic of the
IDMs to appear at least once in the test data. Since specific-value
and statistics-based constraints may still be used, a column to which
a specific-value constraint is applied may have more values than an-
other column to which no constraints are applied. To apply EC, we
may have to generate additional values for the columns that have
few values from their IDMs. If a column has a unique key con-
straint, we generate new values randomly; otherwise, we re-use the
existing test values from the IDM.

Table 1: The Studies Table
StudyID Active (DC) Active (no DC) ProjectID
s1 0 0 p1
s2 1 0 p1
s3 0 1 p2
s4 1 1 p2

2.3.2 Test Data Generation Algorithm
When density, combinatorial coverage, logic, or test set size con-

straints are applied, we use the test data generation algorithm in
Algorithm 1 to address the constraints.

First, we consider foreign key constraints. The row number for
a table #rows is set to the maximum integer. We calculate an or-
dered list of tables using topological sorting of the foreign key con-
straints. We start generating test data for a table without foreign
key constraints or dependencies, followed by the tables that have
dependencies.

Second, we generate test values for density constraints before we
consider combinatorial coverage and logic constraints. Otherwise,
we have to re-process combinatorial coverage and logic constraints
because density constraints could generate more test values, which
may not satisfy the combinatorial coverage and logic constraints.
We take values from the IDMs for the child and parent columns
and generate test values for the parent columns first. If there is
more than one parent column, BIT-TAG uses ACTS to generate
a data set to satisfy all combination coverage. If users specify a
specific number between 1 and the number of total combinations,
the user specified number of instances are randomly selected from
the complete set of combinations for the parent columns; otherwise,
all the combinations are used. Then we generate values for the child
columns, which are usually primary key columns. If the required
IDs for the child columns are more than what we have in the IDMs,
BIT-TAG randomly generates more IDs. #rows is updated with the
number of child instances.

Third, we generate test values for columns to which combina-
torial coverage is applied using ACTS. BIT-TAG understands the
columns, test values for each column, and the coverage criterion
and then passes them to ACTS to generate test values. If a density
constraint exists, the combinatorial coverage is applied to all child
objects of each parent instance. It is important that the number of
the child objects for each parent instance is greater than the number
of the values generated by the combinatorial coverage; otherwise,
extra values could be discarded. #rows is updated with the number
of the combinations.

Fourth, we generate test values to satisfy logic constraints. Sim-
ilar to combinatorial coverage constraints, if a density constraint
exists, the logic constraint is applied to all child objects for each
parent instance. Otherwise, the logic constraint is applied to all ex-
isting rows of the table. In the current implementation, if a logic
constraint specifies the predicate coverage, the test data for a table
is expected to have one half of the rows to evaluate the predicate to
true and the other half to evaluate the predicate to false.

Last, if the test set size constraint specifies a larger number than
#rows, we generate additional rows. For each extra row, we ran-
domly re-use test values from the AIDMs for each column. If
unique key constraint is applied to a column, BIT-TAG generates
new values randomly.

One important decision in Algorithm 1 is to handle combinato-
rial coverage and logic constraints when density constraints exist.
We give an example to show how Algorithm 1 handles logic con-
straints with the presence of density constraints. The same idea is

640

applied to the handling of combinatorial coverage constraints. As-
sume we have a table that has a primary key column “StudyID,” a
foreign key column “ProjectID,” and another column “Active” that
indicates whether a study is active. In addition, we have a density
constraint that requires each parent column “ProjectID” instance to
have two children column “StudyID” objects. Then the project p1
has studies s1 and s2 and the project p2 has studies s3 and s4, as
shown in Table 1. If we have a logic constraint that specifies PC
over column “Active,” BIT-TAG generates test values to satisfy PC
for each parent instance, p1 and p2, as shown in the second column
in Table 1 (DC means density constriants). However, if no density
constraints are specified, BIT-TAG could generate test values in the
third column. All the tuples in the table satisfy PC but the tuples
for each project do not. This approach ensures PC is still satisfied
no matter which project instance is filtered out in join operations.

Algorithm 1 Test Data Generation Algorithm
Require: A set of AIDMs, one for each table
Ensure: A set of test data TD for each table
1: calculate an ordered list of tables T based on topological order

of the foreign key constraints between tables
2: for each table t ∈ T do
3: #rows = INT_MAX
4: if a density constraint DC exists then
5: generate test values for parent and child columns
6: end if
7: if a combinatorial coverage constraint CCC exists then
8: if a density constraint exists then
9: for each parent instance p ∈ DC do

10: generate test data so that all tuples for p satisfy
CCC

11: end for
12: else
13: generate test data so that all tuples in t satisfy CCC
14: end if
15: update #rows with the current row number
16: end if
17: if a logic constraint LC exists then
18: if a density constraint exists then
19: for each parent instance p ∈ DC do
20: generate test data so that all tuples for p satisfy the

coverage in LC
21: end for
22: else
23: generate test data so that all tuples in t satisfy the cov-

erage in LC
24: end if
25: update #rows with the current row number
26: end if
27: if a test set size constraint TSSC exists then
28: if the row number of TSSC > #rows then
29: add extra rows from AIDMs
30: end if
31: end if
32: save the test data into TD
33: end for
34: return TD

2.4 Adaptive Input Domain Model
In this section, we discuss how BIT-TAG expands IDMs with

additional information to create Adaptive Input Domain Models
(AIDMs). AIDMs make it possible to update IDMs when a change

arises without reprocessing the original data source. The statistics-
based constraint is the only constraint that requires to process the
original table data (excluding database schema). When applying
this constraint, we select test values based on their frequencies. So
BIT-TAG saves distinct test values with their frequencies for each
column for each table and these are referred to as the analytical re-
sults in this paper. Later on when new data is added or the statistics-
based constraint changes, BIT-TAG can re-use the saved analytical
results to select the new values. In addition, all constraints includ-
ing the schema-based constraints are saved in corresponding data
structures. Thus, we do not need to re-process the original data
source to get the database schema, either. Therefore, AIDMs in-
clude IDMs, the analytical results, and constraints. All the data are
saved in corresponding data structures in JSON files.

If data is changed, we compare the new data with the saved an-
alytical results. Medidata has an internal tool to automatically col-
lect latest data changes and save them as special JSON data sets.
The syntax of the JSON structure includes key information such as
type, changes, when. type specifies the type of a change, update,
create, or delete. changes specifies the actual changes on a col-
umn including the column name, the old value and the new value.
when gives the time for the change. By analyzing these data sets,
BIT-TAG knows what data is old and what data is new, without re-
processing the original data source. If a value is added and it does
not exist in the analytical results, this new value with the frequency
of one is added. If there is one change to a value that has existed
in the analytical results, the frequency of the value is modified, or
the value is deleted. Then BIT-TAG may derive different test val-
ues to create IDMs. For example, if the values of the most frequent
and least frequent distinct test values are affected, the derived test
values from statistics-based constraints may differ.

When constraints change, BIT-TAG finds out which columns are
affected by the changes and only updates the constraint data for the
affected columns in AIDMs. The IDMs for unaffected columns re-
main the same. BIT-TAG may derive different test values from the
new constraints including check, default, specific value, logic, and
statistics-based constraints. Note that when statistics-based con-
straints change, we derive new test values from the saved analytical
results. Then BIT-TAG uses the newly derived test values to create
IDMs. When the schema of a table is changed, BIT-TAG has to
re-generate AIDMs for this table.

BIT-TAG takes the same test data generation approach, with the
new foreign key, density, combinatorial coverage, and test set size
constraints. Testers often need to add extra foreign key constraints
when the database is missing some because the testers were un-
aware of those foreign key constraints at the start.

3. IMPLEMENTATION OF BIT-TAG
Section 3.1 describes the architecture of BIT-TAG. Section 3.2

presents the specifications of constraints. Section 3.3 discusses the
most recent implementation and development of BIT-TAG.

3.1 Architecture
Figure 1 shows the overall architecture of BIT-TAG. BIT-TAG

consists of two phases, the initial cycle and subsequent cycles. In
the initial cycle, BIT-TAG collects and analyzes the original data
source and initial constraints. BIT-TAG saves analytical results and
derives important values to create IDMs for every input. Then BIT-
TAG creates AIDMs by combining the IDMs with analytical re-
sults. An effective test set is generated from the AIDMs by satisfy-
ing combinatorial coverage and other constraints.

In the subsequent cycles, we deal with three types of change.
First, new data coming from customers. Second, existing con-

641

Figure 1: The Architecture of BIT-TAG

straints are modified or new constraints are added. Practitioners
often need to update constraints in agile development as they under-
stand more about requirements. Third, reviewers return feedback
about the previously generated effective test data sets. Reviewers
could include product analysts, architects, developers, and testers.
Then the constraints are updated based on the feedback. There-
fore, when the data or constraints change, BIT-TAG collects and
analyzes the changes and updates the existing AIDMs. A new ef-
fective test data set is generated from the new AIDMs, independent
of the prior test data set.

3.2 Specifications of Constraints
During agile development of ETL applications, we focus on anal-

ysis of requirements of data transformation. While analyzing the
requirements, we need to understand how each column in the source
is mapped to each column in the target. We also need to understand
the detailed transformation logic, e.g., how to transform a column
of the Integer type in the source to a column of the Boolean type
in the target? In addition, when we perform a join operation be-
tween two or more tables, we need to understand the join and filter
conditions, i.e., the conditions used in the on and where statements.
Domain experts and architects usually construct the mapping infor-
mation from the requirements. BIT-TAG users derive constraints
from the requirements, along with the mapping information. Next,
we explain each constraint in detail and discuss how to specify each
constraint.

For statistics-based constraints, BIT-TAG saves distinct values
with their frequencies for each column. If the original data source
is very large (e.g., in Terabytes), it may take a long time to process
the data and a lot of space to save the analytical results (when there
are a lot of long distinct values). BIT-TAG could save a small sub-
set (e.g., 10%) whose values are chosen randomly from the original
data source. Then the saved partial data should have similar statis-
tical distribution as the original data source. Note that we do not
need to record data of some columns such as UUIDs. UUIDs in the
original data source are not important for testing and we can gen-
erate new UUIDs in test data sets. In addition, saving them usually
takes a lot of disk storage. By default, BIT-TAG derives the most
frequent, least frequent test values and another value with a ran-
dom frequency. Users can specify another number that is greater
than three to derive more test values. The extra values besides the
default selection are chosen randomly.

BIT-TAG automatically extracts check and defaults constraints
from database schema. If they do not exist in database schema
and users would like to specify them in JSON, check constraints
can be specified as logic constraints and default constraints can be
specified as specific-value constraints. Each table has a JSON file
that specifies constraints. The types of constraints are explained in
the next paragraph.

Statistics-based, specific-value, foreign key and unique constraints
are specified in a column attribute, which includes columnName,
referredTableName, referredColumnName, specificValues, statis-
ticsValues, and isUnique. A density constraint includes child, par-
ent, maxChildren, and numParentInstances. The child attribute is
the child column ID (the primary key). The parent attribute shows
the parent column IDs (with foreign keys). The maxChildren at-
tribute gives the maximal number of child instances included by
each parent instance. The numParentInstances attribute presents
the number of parent instances. A combinatorial coverage con-
straint includes columns and covType. covType specifies a coverage
criterion applied to columns. A logic constraint includes expres-
sion and genType, which specifies a logic expression and a logical
coverage criterion to apply. A test set size constraints includes an
integer to specify the number of rows of the test set to generated.

3.3 Implementation and Usage
We have implemented the combinatorial test data generation ap-

proach in a Java based software application, BIT-TAG. Some de-
tailed information is listed in Table 2. Currently BIT-TAG is able
to read database data and schema from Microsoft SQLServer and
MySQL databases. To generate test values to satisfy combinatorial
coverage, we integrate ACTS [18] into BIT-TAG. With the efficient
algorithm, IPOG [19], ACTS can generate a test data set to satisfy
t-way coverage pretty quickly. Potentially, satisfying t-way cover-
age when t is large (t ≥ 6) and there are lots of test values for each
input parameter could take a long time. However, in our usage,
we usually apply t-way coverage to no more than four input pa-
rameters. Because we modestly and smartly select test values from
constraints, test values for each input parameter are not many. Sat-
isfying t-way coverage using BIT-TAG does not take a long time.
Detailed information can be found in Section 4.

To improve the code quality, we have used JaCoCo [14] to mea-
sure the statement and branch coverage for BIT-TAG. To avoid po-
tential faults and improve readability, we applied CheckStyle [6]

642

Table 2: BIT-TAG
Language #Files #Lines
Java 154 18, 411
XML 21 1, 381
Others 2 350
Total 177 20,142

and SonarQube [25] static analysis tools. In addition, we also cre-
ated the Continuous Integration (CI) environment for BIT-TAG on
Jenkins [16].

When a new test data set is generated, expected values in test
oracles are likely to change. Testers have to manually write new
expected values. To reduce the changes on the expected values,
BIT-TAG uses the same seed for random methods. For security and
privacy reasons, BIT-TAG sanitizes identifiable information of real
customers such as emails when extracting data from original data
sources. BIT-TAG can be used for big data applications that use
databases and have constraints and business rules on data objects.

In the current implementation of BIT-TAG, most of the con-
straints (except foreign key constraints) are used to describe data
relationships and combinations between no more than one table.
Currently we are not able to specify special business rules that in-
volve more than two tables. For example, consider tables A and B
which are joinable and undergo the join operation. After the join
of A and B, tuples that have the same value for a column in B must
have the same value for a column in A. To handle such special
business rules, we provide public APIs to users. The users can pro-
grammatically make BIT-TAG API calls to access the AIDMs and
generated test data for each table object. Therefore, the users can
implement the business rules by modifying the test data. The prob-
lem of how to manually derive constraints from requirements in a
systematic manner and optimize data structures of constraints is an
ongoing research topic. An in-depth discussion about this topic is
out of the scope of this paper.

4. EXPERIMENTS
The objective of the experiments is to examine if we can use test

data sets generated by BIT-TAG to replace data sets generated by
existing approaches. Currently, there are three possible approaches,
including 1) use the original data source, 2) select test data ran-
domly from the original data source, and 3) generate test data sets
manually.

We did not compare to manually generated data sets because the
manual data generation is an ad-hoc approach. The manual data
sets may differ to a great degree, as different developers could gen-
erate different test data sets, depending on their experience and do-
main knowledge. The development phase also has an effect in that
the data set used in a later phase is supposed to be more effective
than the data set used in an earlier phase since developers keep
updating the data set as they have better understanding of require-
ments and find faults or deficiencies in the program.

We call the original data source and random test data sets tra-
ditional data sets. Specifically, we study the efficiency and effec-
tiveness of BIT-TAG, compared to the traditional data sets. The
efficiency is defined in terms of time of executing ETL programs,
and the effectiveness is defined in terms of faults found.

4.1 Experiment Design
We show the subject systems first in Section 4.1.1, discuss three

kinds of experimental test data and faults in Section 4.1.2, and
present the experimental procedure in Section 4.1.3.

Table 3: The Cloc Report for the project A
Language #Files #Lines
SQL 219 33, 516
XML 5 4, 697
C# 2 334
Others 5 294
Total 231 38,841

Table 4: The Cloc Report for the project B
Language #Files #Lines
SQL 12 3, 801
Java 42 2, 466
Javascript 2 1, 091
XML 14 557
Others 9 586
Total 79 8,501

4.1.1 Experimental Subjects
To evaluate the effectiveness and efficiency of data sets generated

by different approaches, we used two real-world enterprise-level
ETL projects from Medidata as our subjects. Due to non-disclosure
agreements, we cannot show project names, customer names, or
other detailed information about the products. Thus, we use P_A
and P_B to refer to these two projects.

P_A extracts, transforms, and loads Microsoft SQLServer datab
ases. For each customer, we have a separate database. In the ex-
periments, we selected three databases from hundreds of customer
databases to represent three categories in size: small, medium, and
large. These three database are named A-DB-1, A-DB-2, and A-
DB-3, and their sizes are 14 GB, 140GB, and 1.4TB, respectively.
These three databases are often used in development sandbox envi-
ronments. This project primarily uses Microsoft SQL Server Inte-
gration Services (SSIS) for data migration and transformation. The
development of the SSIS packages are under the Microsoft Visual
Studio environment.

The project B extracts and transforms data from a MySQL databa
se and loads the transformed results into Amazon Simple Storage
Service (AWS S3) in the CSV format. The original MySQL source
used for P_B, referred to as B-DB, has 3 GB data. Unlike P_A
that has separate databases for different customers, P_B has only
one database for all customers. This project uses Pentaho [9] as
the business intelligence and analytics solution for data transfor-
mation. Pentaho provides various widgets for developers to quickly
perform tasks for ETL work-flow jobs such as copying files, vali-
dating XML files, truncating tables, writing logs, Sqoop exporting
[11], and Pentaho MapReduce, etc. On top of the built-in widgets,
developers can easily write SQL scripts and programs in another
language such as Java to accomplish other general purpose opera-
tions.

Table 3 and Table 4 show the number of lines for P_A and P_B,
measured by a line counter, Cloc version 1.6.2 [10]. The first three
columns of Table 5 show the sizes and row counts of the core tables
used for P_A and P_B. Out of 613 tables, P_A uses 19 core tables,
which have a total of 386 columns. Out of 126 tables, P_B uses 22
core tables, which have a total of 257 columns.

4.1.2 Experimental Data Sets and Faults
We chose original data sources and randomly selected data (i.e.,

random data sets) as traditional data sets to compare with BIT-TAG

643

Table 5: Original and Test Databases
Databases Size Row Count Test Database Size Row Count %Size %Row Count
A-DB-1 14GB 47, 284, 837 T-A-DB-1 17MB 2, 093 0.12 0.004
A-DB-2 140GB 126, 350, 671 T-A-DB-2 17MB 2, 093 0.012 0.002
A-DB-3 1400GB 3, 744, 577, 981 T-A-DB-3 17MB 2, 093 0.001 0.00006
B-DB 3GB 4, 107, 768 T-B-DB 2MB 1, 540 0.07 0.04

data sets. We will analyze each data source and give the reason that
we did not use data sets generated manually. Developers started
with manually generated data sets (a common practise in industry
as mentioned in the introduction) but soon they abandoned these
data sets because it was difficult to manually update data sets with
frequent constraint changes. They started using data sets generated
by BIT-TAG with the help of BIT-TAG developers.

The original data sources used in the experiments are data in the
sandbox environment used for development. These data sources
are replicas of the production data at one time. Though the original
data sources may not have the latest customer data, they are usually
considered to be the most comprehensive in terms of constraints
and relationships covered across different tables. So using the orig-
inal data sources is supposed to find nearly all potential faults. The
drawback is that the original data sources have high volumes of data
and take a long time to process. Even though we will eventually de-
ploy and run ETL programs in production against the original data
sources, we do not want to run the original data source every time
with frequent changes.

If we randomly select a small amount of data from a database, it
is likely that no results are returned after join operations when the
selected data do not satisfy foreign key constraints. Thus, the data
set could not be very effective. If we randomly select many data
from each table, the data could satisfy foreign key constraints but
they may still take too long to process in agile development. We
would like to see if a random data set has the same effectiveness as
the BIT-TAG data set, with the same size. Currently, we do not have
a tool that randomly selects data that satisfy foreign key constraints.
So we just randomly selected data from the original data sources,
with the same number of rows as those in the BIT-TAG data set for
each table.

For the effectiveness, we identified faults based on the fault list of
P_A and history changes of P_B. P_A has nine documented faults
but P_B does not have faults recorded. Similar to many empirical
studies that apply mutation analysis [2] where synthetic changes
to source code are treated as potential faults, we treated the past
changes in P_B as potential faults. The rationale is that we believe
an effective test data set would cause developers to find faults in the
existing code base and make changes to the source code. Ideally,
when developers make a new change to the core transformation,
running the test data would render a different result from a prior
code commit. So we checked the changes to the 12 core trans-
formation steps that have SQL scripts on the Github repository of
P_B. Faults were counted by SQL scripts by commits. In each code
commit, all the changes made to a SQL script are considered to be
a fault. We examined every fault to make sure it is not semantically
equivalent to the original program. We tested every faulty version
to make sure executing it using the original data source rendered
a different result from the original program. We counted 123 non-
semantically-equivalent faults in the core transformation steps for
P_B.

4.1.3 Experimental Procedure
We ran the experiments as follows.

1. We read and understood the requirements of P_A and P_B,
with help from product analysts and developers.

2. We created the constraints for each table of the databases
used in P_A and P_B.

3. We generated test data sets using BIT-TAG for P_A and P_B
and recorded the sizes of the test data sets. We used T-A-DB-
1, T-A-DB-2, T-A-DB-3, T-B-DB to refer to the test data sets
generated by BIT-TAG from the corresponding original data
sources.

4. We generated random test data sets from the original data
sources of P_A and P_B and recorded the sizes of both the
original data sources and random data sets.

5. We ran the ETL jobs in each project using the original data
sources, saved the results as the expected values, and recorded
the execution time.

6. We injected one fault into the corresponding project at one
time. Ran the ETL job with the injected fault using the orig-
inal data source, saved the results as actual values.

7. We compared the expected and actual values. If they differ,
and if using the original data source detected this fault and
recorded this fault.

8. We repeated the steps 5-7 using the BIT-TAG and random
test data sets.

We conducted the experiments on a 64-bit Windows Server 2012
R2 platform, with 8 Intel i7-3770 (3.40GHz) processors, 32 GB
RAM, and 5TB hard drive. We used Microsoft SQLServer 2012
and MySQL 5.6 for P_A and P_B, respectively.

During agile development of ETL programs, developers could
make frequent changes to the core transformation jobs as their un-
derstanding about the requirements evolves. BIT-TAG plays a crit-
ical role in such the agile development since it allows a new test
data set to be quickly generated when such changes take place.

The key to specification of constraints is to develop a good un-
derstanding about the requirements and the product databases. Af-
ter such understanding is developed, actual specification of con-
straints does not take much time. This has been the case in our
experiments. Note that business rules about a product database are
relatively stable, while the actual data may be frequently changed
in the database. In addition, database schema-related constraints
are automatically extracted. These factors help to reduce the time
and effort needed for constraint specification.

4.2 Experimental Results
Table 6 shows the constraints and business rules we manually

specified and automatically derived from databases for P_A and
P_B. We use “-” to represent that it is not applicable to specify
constraints. The developers of BIT-TAG specified constraints and
generated test data sets but did not know the faults. We added spec-
ifications for some of the foreign key constraints and unique key

644

constraints because they are missing in A-DB-1, A-DB-2, A-DB-3,
and B-DB. For statistics-based constraints, BIT-TAG extracts three
values by default. We did not give extra specifications. BIT-TAG
applied combinatorial coverage criteria when they are specified in
the combinatorial coverage constraints. For other columns where
constraints are not specified, EC is applied by default. We also
implemented some business rules using the APIs of BIT-TAG.

Table 6: Constraints and Business Rules for Each Project

Constraints Manual Automated
P_A P_B P_A P_B

Foreign key 19 51 17 0
Check - - 2 0
Default - - 111 44
Specific value 21 40 - -
Logic 10 2 - -
Statistics-based - - - -
Density 9 6 - -
Unique key - 13 5 38
Combinatorial coverage 9 6 - -
Test set size - 2 - -
Business rules 3 13 - -

We did not measure the time for translating requirements into
constraints because most of the time was spent on understanding
requirements and product business rules. Once we understood the
requirements and business rules, the translation did not take much
time. In addition, it was difficult to separate the time for the transla-
tion from the time for understanding the requirements. Practition-
ers usually start coding while they are understanding requirements
in agile development. Through a few agile development cycles,
the practitioners fully understand the requirements. So it is hard to
measure the time for learning the requirements.

Table 5 shows the sizes of the test data sets generated by BIT-
TAG, compared with the original data sources. The last two columns
show the percentages of the size of the test data set over the size of
the original data source in terms of disk storage and row count.
T-A-DB-1, T-A-DB-2, and T-A-DB-3 have the same size, even if
their original data sources (i.e., A-DB-1, A-DB-2, and A-DB-3)
vary from 14 GB to 1.4 TB. This is because we used the same con-
straints to generate the test data. A-DB-1, A-DB-2, and A-DB-3
have the same database schema. For the same product with dif-
ferent customer databases, we can use the same constraints for the
test data generation. The test values may vary in each test data set
because statistic-based constraints may extract different test values
based on frequencies from each customer database. The test data
sets are very small compared to the original data sources. T-A-DB-
3 is only 0.001% and 0.00006% of A-DB-3 in terms of the disk
storage size and row count, respectively. Since random test data
have the same row counts as the BIT-TAG test data set, we do not
show them.

Table 7 shows the generation time for the test data sets by BIT-
TAG. “m” represents minutes. “s” represents seconds. “h” repre-
sents hours. “d” represents days. “w” represents weeks. “d” and
“w” are used in Table 9. We measured the time for generating initial
test data sets and subsequent test data sets using BIT-TAG. We mea-
sured the time five times and calculated the averages. Generating
the initial test data sets could take a long time because this needs to
process original data sources. Even if generating T-A-DB-3 took up
to 18 hours from A-DB-3, this happened for only one time. Gener-
ating subsequent test data only took 1-2 minutes when we changed
constraints. We used the built-in random method of SQL to gen-

Table 7: Time for Test Data Generation
Test Databases Time (First) Time (Second)
T-A-DB-1 3m30s 2m
T-A-DB-2 40m 2m
T-A-DB-3 18h 2m
T-B-DB 2m 1m

Table 8: Faults detected
Project #Total Faults #BIT-TAG #Original #Random
A 9 9 9 0
B 123 123 123 0
Total 132 132 132 0

erate random test data sets for each table from every original data
sources. Generating random test data sets took dozens of minutes
from A-DB-3 and took a few minutes from other databases.

Table 8 shows the faults detected by using the original data sources,
BIT-TAG test data sets, and random test data sets. BIT-TAG test
data sets found all the faults detected by the original data sources.
We ran the ETL jobs of P_A and P_B with the random test data
sets and they did not find any faults because the random data did
not satisfy the foreign key constraints.

Table 9 presents the execution time for running ETL jobs of P_A
and P_B using the original data sources, the BIT-TAG test data sets,
and random test data sets. We can see running the ETL jobs of P_A
and P_B using the original data sources took a long time, while
using the BIT-TAG test data sets took very little time.

In summary, the BIT-TAG test data sets found all the faults de-
tected by the original data sources. Running the ETL jobs in P_A
and P_B using the BIT-TAG test data sets only took a very small
fraction of the time of using the original data sources. BIT-TAG is
more efficient than using the original data source. BIT-TAG has the
same effectiveness as using the original data source and is more ef-
fective than the random test data generation. Since BIT-TAG is very
effective in finding faults and efficient in generating and executing
test sets for P_A and P_B, we believe BIT-TAG can be successfully
used in agile development of big data applications. The develop-
ers and stakeholders have given very positive feedback about BIT-
TAG. We are in a process of improving the usability of BIT-TAG
and guiding the developers to use BIT-TAG. We will continue using
BIT-TAG in future ETL projects.

4.3 Threats to Validity
As in most software engineering studies, one external threat to

validity is that the subject programs may not be representative. We
ameliorated this threat by selecting real-world subjects from indus-
try with a variety of sizes and kinds of databases. Another threat in
the experiments could be that we translated the requirements into
constraints. Other people may specify different constraints. Once
testers fully understand requirements and product business rules,
they should come up with similar constraints even if they may dif-

Table 9: Execution Time
Original Databases Time Test Databases Time
A-DB-1 1d T-A-DB-1 3m
A-DB-2 3d T-A-DB-2 3m
A-DB-3 2w T-A-DB-3 3m
B-DB 3h T-B-DB 30s

645

fer sightly. So this should not affect the experimental results much.
Another external threat is that we used BIT-TAG and ACTS to gen-
erate test data sets. The faults in these two tools may affect the
results. As described in Section 3, we have applied best practices
of Java programming when developing BIT-TAG. ACTS has been
used by many users for a long time. One construct validity threat
is that we used real faults and historical changes as faults. Using
synthetic faults may generate different results. However, we be-
lieve using real faults and actual changes should better reflect the
effectiveness of our approach.

4.4 Lessons Learned
We summarize the following major lessons learned from our ex-

perience.

• Identification of constraints requires a good understanding
about the requirements. Ideally all the important informa-
tion should be clearly documented, which is however not the
case in practice. In the course of this project, we held many
discussion sessions with subject experts to clarify our un-
derstanding. We ran into situations in which an ETL script
didn’t return any results because some requirements were not
converted into constraints. Many constraints were discov-
ered and/or corrected during those discussion sessions as we
obtained a better understanding about the requirements.

• Not all columns interact with other columns. Thus, it is of-
ten not necessary to achieve uniform t-way coverage among
all the columns. In our experiments, we achieved pairwise
coverage for columns that are involved in the same busi-
ness rules, and all-combination coverage for columns that
have many-to-many relationship. For columns that are not
involved in any business rule, we covered them to achieve
each-choice coverage. Doing so has significantly reduced
the size of the generated dataset without compromising test
effectiveness.

• When PC is specified for a logic constraint, we generated half
of the rows in a table that evaluate to true and the other half to
false. This seems redundant since PC only requires two rows,
one evaluating to true and the other to false. However, when
tables are joined over with filtering, i.e., with a where clause,
this redundancy helps the remaining rows to still satisfy PC.

5. RELATED WORK
In this section, we discuss previous research on database-oriented

test data generation and compare it to our work. Chay et al. [7] pre-
sented an approach that uses input space partition to generate test
data for traditional database applications. They use a manual ap-
proach to create IDMs where synthetic data is used. In contrast,
our approach generates IDMs automatically and derives test values
from the original data source.

Olston et al. [24] presented an approach that generates example
data sets for testing dataflow programs. In their approach, an ex-
ample data set is first created by sampling the original database and
then refined by propagation and pruning in multiple passes. Li et al.
[21] improved the work in [24] to deal with user-defined functions.
Specifically, they derive symbolic constraints from dataflow oper-
ators and use concolic execution [12] to solve those constraints.
In both approaches, the user needs to provide equivalence classes
for each dataflow operator. This requires a detailed understanding
about the semantics of each operator, which may not be possible
for general programs. Also, both approaches require access to the

source code. In contrast, our work generates test data from the orig-
inal data source and requirements, and it does not require access to
the source code.

Li et al. [20] reported an approach that uses clustering to gen-
erate test data for data-centric applications. The main idea is to
group similar records in a database together and compute a rep-
resentative record for each group based on the notion of centroid
object. In order to preserve test coverage, their approach performs
static analysis to determine the weights of attributes in a database,
which is needed to compute the distance between different records.
As a result, this work also requires access to the source code, which
is different from our work.

We note that many approaches generate large data sets to evalu-
ate the performance of big data computing platforms [1, 3, 4, 13,
23, 26, 27]. These approaches are fundamentally different from test
data generation approaches whose goal is to find faults that may ex-
ist in big data programs.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we report our experience of applying a combina-

torial testing approach to two real-world ETL applications.This ap-
proach automatically creates models, i.e., AIDMs, from the orig-
inal data source. AIDMs extend traditional input domain models
(IDMs) to include analytical results that capture important charac-
teristics of the original data source and constraints. Based on the
AIDMs, our approach generates a data set to satisfy t-way combi-
natorial coverage and other constraints. When there is a change in
the data source and constraints, our approach updates the AIDMs
by comparing the saved analytical data with the change and gen-
erates a new test data set. Our results show that the test data set
generated by our approach detected the same faults as the original
data source, taking a fraction of the time executed by the original
data sources. This suggests that combinatorial testing can be effec-
tively applied to big data applications.

In the future, we plan to improve BIT-TAG in the following di-
rections with our own interests. First, we plan to optimize the per-
formance of existing constraint handling and also include support
for new types of constraints to better capture requirements. Second,
we will conduct experiments on more and even larger data sets, and
compare BIT-TAG with other approaches described in Section 5.
Third, we plan to use machine-learning techniques to identify im-
portant test values from the original data source. Machine-learning
techniques could also be used to optimize AIDM creation and test
data generation by learning from previously generated data sets.
Fourth, we would like to refactor BIT-TAG to support more data
types such as spatial types. Fifth, BIT-TAG could be improved to
reuse existing data sets to generate a new data set when constraints
change. Sixth, generating a minimal (in terms of row counts) test
data set to satisfy all constraints is an interesting problem to study.

7. ACKNOWLEDGMENTS
We offer our sincerest gratitude to Isaac Wong, Anthony Escalona,

Susan Finley, and Angela Sloan for supporting this research, and
Neha Tyagi and Donald Lancaster, for helping us set up experi-
ments. Lei’s work is partly supported by a research grant (70NANB1
5H199) from National Institute of Standards and Technology.

8. REFERENCES
[1] A. Alexandrov, K. Tzoumas, and V. Markl. Myriad: Scalable

and expressive data generation. Proc. VLDB Endow.,
5(12):1890–1893, Aug. 2012.

646

[2] P. Ammann and J. Offutt. Introduction to Software Testing.
Cambridge University Press, Cambridge, UK, 2008.

[3] A. Arasu, R. Kaushik, and J. Li. Data generation using
declarative constraints. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’11, pages 685–696, New York, NY, USA, 2011.
ACM.

[4] N. Bruno and S. Chaudhuri. Flexible database generators. In
Proceedings of the 31st International Conference on Very
Large Data Bases, VLDB ’05, pages 1097–1107. VLDB
Endowment, 2005.

[5] R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A framework
of greedy methods for constructing interaction test suites. In
Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005., pages 146–155, May 2005.

[6] O. Burn. Checkstyle. Online, 2001.
http://checkstyle.sourceforge.net/, last access April 2016.

[7] D. Chays, S. Dan, P. Frankl, F. Vokolos, and E. Weyuker. A
framework for testing database applications. In Proceedings
of the 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’00, pages Pages
147–157, Portland, Oregon, USA, 2000.

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.
The AETG system: An approach to testing based on
combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–444, July 1997.

[9] P. Corporation. Pentaho. Online, 2004.
http://www.pentaho.com/, last access April 2016.

[10] A. Danial. CLOC. Online, 2006.
https://github.com/AlDanial/cloc, last access April 2016.

[11] A. S. Foundation. Apache Sqoop. Online, 2011.
http://sqoop.apache.org/, last access Sept 2014.

[12] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pages 213–223, New York,
NY, USA, 2005. ACM.

[13] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’94, pages 243–252, New York, NY, USA, 1994. ACM.

[14] M. Hoffmann, B. Janiczak, E. Mandrikov, and
M. Friedenhagen. Jacoco code coverage tool. Online, 2009.
http://eclemma.org/jacoco/, last access April 2016.

[15] H. Hu, Y. Wen, T.-S. Chua, and X. Li. Toward scalable
systems for big data analytics: A technology tutorial. Access,
IEEE, 2:652–687, June 2014.

[16] K. Kawaguchi. Jenkins. Online, 2011. https://jenkins-ci.org/,
last access April 2016.

[17] D. R. Kuhn, D. R. Wallace, and J. A. M. Gallo. Software
fault interactions and implications for software testing. IEEE
Transactions on Software Engineering, 30(6):418–421, June
2004.

[18] R. Kuhn, R. Kacker, and Y. Lei. Automated combinatorial
testing for software (ACTS). Online, 2009.
http://csrc.nist.gov/groups/SNS/acts/, last access May 2015.

[19] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence.
Ipog/ipog-d: efficient test generation for multi-way
combinatorial testing. Software Testing, Verification and
Reliability, 18(3):125–148, 2008.

[20] B. Li, M. Grechanik, and D. Poshyvanyk. Sanitizing and
minimizing databases for software application test
outsourcing. In Proceedings of the 2014 IEEE Seventh
International Conference on Software Testing, Verification
and Validation, ICST ’14, Cleveland, Ohio, USA, 2014.

[21] K. Li, C. Reichenbach, Y. Smaragdakis, Y. Diao, and
C. Csallner. Sedge: Symbolic example data generation for
dataflow programs. In Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on,
pages 235–245, Palo Alto, CA, USA, Nov 2013.

[22] N. Li, A. Escalona, Y. Guo, and J. Offutt. A scalable big data
test framework. In IEEE 8th International Conference on
Software Testing, Verification and Validation, Graz, Austria,
April 2015.

[23] Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and
J. Zhan. Bdgs: A scalable big data generator suite in big data
benchmarking. In Advancing Big Data Benchmarks, volume
8585 of Lecture Notes in Computer Science, pages 138–154.
Springer International Publishing, 2014.

[24] C. Olston, S. Chopra, and U. Srivastava. Generating example
data for dataflow programs. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data,
SIGMOD’09, Providence, Rhode Island, USA, 2009.

[25] SonarSource. Sonarqube. Online, 2001.
http://www.sonarqube.org/, last access April 2016.

[26] E. Torlak. Scalable test data generation from
multidimensional models. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, pages 36:1–36:11, New
York, NY, USA, 2012. ACM.

[27] P. Zhang, S. Elbaum, and M. B. Dwyer. Automatic
generation of load tests. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software
Engineering, ASE ’11, pages 43–52, Washington, DC, USA,
2011. IEEE Computer Society.

647

